

This document may be freely reproduced in whole or part without permission and without restriction.

McAfee OpenSSL
FIPS Object Module

Version 1.0.1

FIPS 140-2 Non-Proprietary Security

Policy

Version 1.9

October 2017

Prepared by:

Acumen Security

18504 Office Park Dr.

Montgomery Village, MD 20886

www.acumensecurity.net

http://openssl.org/
http://www.acumensecurity.net/

2

Modification History

Version Date Description

Version 1.0 Nov 2016 Initial Release

Version 1.1 Nov 2016 Updated based on internal review

Version 1.2 December 2016 Updated based on internal review

Version 1.3 December 2016 Updated based on internal review

Version 1.4 December 2016 Added CAVP algorithm certificate numbers

Version 1.5 December 2016 Updates based on quality review

Version 1.6 December 2016 Updates to cover page, removal of watermark and branding of document

Version 1.7 May 2017 Updates to address CMVP comments and quality review

Version 1.8 June 2017 Updated to address Comments

Version 1.9 October 2017 Updated to address typos

3

References
Reference] Full Specification Name

[FIPS 140-2] Security Requirements for Cryptographic modules, May 25, 2001

[FIPS 180-4] Secure Hash Standard

[FIPS 186-4] Digital Signature Standard

[FIPS 197] Advanced Encryption Standard

[FIPS 198-1] The Keyed-Hash Message Authentication Code (HMAC)

[SP 800-38B] Recommendation for Block Cipher Modes of Operation: The CMAC Mode for Authentication

[SP 800-38C] Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication
and Confidentiality

[SP 800-38D] Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC

[SP 800-56A] Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography

[SP 800-67R1] Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher

[SP 800-89] Recommendation for Obtaining Assurances for Digital Signature Applications

[SP 800-90A] Recommendation for Random Number Generation Using Deterministic Random Bit
Generators

[SP 800-131A] Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and
Key Lengths

4

Table of Contents

References .. 3

1 Introduction .. 5

2 Tested Configurations .. 7

3 Ports and Interfaces .. 8

4 Modes of Operation and Cryptographic Functionality .. 9

4.1 Critical Security Parameters and Public Keys .. 11

5 Roles, Authentication and Services ... 14

6 Self-test .. 16

7 Operational Environment ... 18

8 Mitigation of other Attacks .. 19

Appendix A Installation and Usage Guidance ... 20

Appendix B Controlled Distribution File Fingerprint ... 22

Appendix C Compilers .. 23

5

1 Introduction
This document is the non-proprietary security policy for the McAfee OpenSSL FIPS Object Module, hereafter
referred to as the Module.

The Module is a software library providing a C-language application program interface (API) for use by other
processes that require cryptographic functionality. The Module is classified by FIPS 140-2 as a software
module, multi-chip standalone module embodiment. The physical cryptographic boundary is the general
purpose computer on which the module is installed. The logical cryptographic boundary of the Module is the
fipscanister object module, a single object module file named fipscanister.o. The Module performs no
communications other than with the calling application (the process that invokes the Module services).

The FIPS 140-2 security levels for the Module are as follows:

Security Requirement Security Level

Cryptographic Module Specification 1

Cryptographic Module Ports and Interfaces 1

Roles, Services, and Authentication 2

Finite State Model 1

Physical Security NA

Operational Environment 1

Cryptographic Key Management 1

EMI/EMC 1

Self-Tests 1

Design Assurance 3

Mitigation of Other Attacks NA
Table 1 – Security Level of Security Requirements

The Module’s software version for this validation is 1.0.1.

6

Figure 1 – Module Block Diagram

7

2 Tested Configurations
Operational Environment Processor

1 Linux 3.10 on VMware ESXi 5.5 Intel Xeon
Table 2 – Tested Configurations

See Appendix A for additional information on build method. See Appendix C for a list of the specific compilers
used to generate the Module.

8

3 Ports and Interfaces
The physical ports of the Module are the same as the system on which it is executing. The logical interface is a
C-language application program interface (API).

Logical interface type Description

Control input API entry point and corresponding stack parameters

Data input API entry point data input stack parameters

Status output API entry point return values and status stack parameters

Data output API entry point data output stack parameters
Table 3 – Logical interfaces

As a software module, control of the physical ports is outside module scope. However, when the module is
performing self-tests, or is in an error state, all output on the logical data output interface is inhibited. The
module is single-threaded and in error scenarios returns only an error value (no data output is returned).

9

4 Modes of Operation and Cryptographic Functionality
The Module supports FIPS 140-2 Approved, allowed and Non-Approved algorithms in a single mixed mode of

operation..

Function Algorithm Options Certificate #

Random Number
Generation;
Symmetric key
Generation

[SP 800-90] DRBG
Prediction resistance
supported for all
variations

Hash DRBG
HMAC DRBG, no reseed
CTR DRBG (AES), derivation function supported

1474

Encryption,
Decryption and
CMAC

[SP 800-67] 3-Key Triple-DES TECB, TCBC, TCFB, TOFB; CMAC
generate and verify

2408

[FIPS 197] AES 128/ 192/256 ECB, CBC, OFB, CFB 1, CFB 8, CTR, XTS;
CCM; GCM; CMAC generate and verify
128/192 CFB 128
128/256 XTS

4511

[SP 800-38B] CMAC
[SP 800-38C] CCM
[SP 800-38D] GCM
[SP 800-38E] XTS

Message Digests [FIPS 180-4] SHA-1, SHA-2 (224, 256, 384, 512) 3699

Keyed Hash [FIPS 198] HMAC SHA-1, SHA-2 (224, 256, 384, 512) 2980

Digital Signature
and Asymmetric
Key Generation

[FIPS 186-2] RSA SigGen9.31 (4096 with SHA-256, 384, 512) 2459

SigGenPSS (4096 with SHA-224, 256, 384, 512)

SigGenPKCS1.5 (4096 with SHA-224, 256, 384, 512)

SigVer9.31 (2048/3072/4096 with SHA-1, 256, 384,
512)

SigVerPKCS1.5 (2048/3072,4096 with SHA-1, 224,
256, 384, 512)

SigVerPSS (1024, 1536, 2048/3072,4096 with SHA-1,
224, 256, 384, 512)

[FIPS 186-4] RSA SigGen9.31 (2048/3072 with SHA-1, 224, 256, 384,
512) Note: SHA-1 affirmed for use with protocols
only
SigVer9.31 (2048/3072 with SHA-1, 224, 256, 384,
512)

2459

SigGenPSS (2048/3072 with SHA-1, 224, 256, 384,
512)
Note: SHA-1 affirmed for use with protocols only

SigVerPSS (2048/3072 with SHA-1, 224, 256, 384,
512)

SigGenPKCS1.5 (2048/3072 with SHA-1, 224, 256,
384, 512)
Note: SHA-1 affirmed for use with protocols only

SigVerPKCS1.5 (2048/3072 with SHA-1, 224, 256,
384, 512)

Key Generation (Random e) PGM (Probable Prime
Condition), (2048/3072)

[FIPS 186-4] DSA PQG(gen) (2048, 224 with SHA-224, 256, 384, 512;
2048, 256 with SHA-256, 384, 512; 3072,256 with
SHA-256, 384, 512)

1201

PQG Ver (1024, 160 with SHA-1, 224, 256, 384, 512;

10

Function Algorithm Options Certificate #

2048, 224 with SHA-224, 256, 384, 512; 2048, 256
with SHA-256, 384, 512; 3072,256 with SHA-256,
384, 512)

Key Pair Gen (2048,224; 2048,256; 3072,256)

Sig Gen (2048,224 with SHA-1, 224, 256, 384, 512;
2048,256 with SHA-1, 224, 256, 384, 512; 3072,256
with SHA-1, 224, 256, 384, 512) note: SHA-1
affirmed for use with protocols only

SigVer (1024, 160 with SHA-1, 224, 256, 384, 512;
2048, 224 with SHA-1, SHA-224, 256, 384, 512;
2048, 256 with SHA-1, SHA-256, 384, 512; 3072, 256
with SHA-1, SHA-256, 384, 512)

[FIPS 186-4] ECDSA PKV: CURVES (ALL-P ALL-K ALL-B) 1097

 PKG: CURVES (P-224 P-256 P-384 P-521 K-233 K-283
K-409 K-571 B-233 B-283 B-409 B-571
ExtraRandomBits TestingCandidates)

SigGen: CURVES(P-224: (SHA-1, 224, 256, 384, 512)
P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1,
224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384,
512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-
1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384,
512) K-571: (SHA-1, 224, 256, 384, 512) B-233: (SHA-
1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384,
512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-
1, 224, 256, 384, 512)) SIG(gen) with SHA-1
affirmed for use with protocols only.

SigVer: CURVES(P-192: (SHA-1, 224, 256, 384, 512)
P-224: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1,
224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384,
512) P-521: (SHA-1, 224, 256, 384, 512) K-163: (SHA-
1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384,
512) K-283: (SHA-1, 224, 256, 384, 512) K-409: (SHA-
1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384,
512) B-163: (SHA-1, 224, 256, 384, 512) B-233: (SHA-
1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384,
512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-
1, 224, 256, 384, 512))

1097

ECC CDH [SP 800-56A] (§5.7.1.2) All NIST defined B, K and P curves except sizes 163
and 192

1197

Table 4a – FIPS Approved Cryptographic Functions

The Module supports only NIST defined curves for use with ECDSA and ECC CDH.

Category Algorithm Description

Key Agreement EC DH Non-compliant (untested) DH scheme using elliptic curve, supporting all NIST defined
B, K and P curves. Key agreement is a service provided for calling process use, but is
not used to establish keys into the Module.

11

Key Encryption,
Decryption

RSA The RSA algorithm may be used by the calling application for encryption or decryption
of keys. No claim is made for SP 800-56B compliance, and no CSPs are established into
or exported out of the module using these services

Table 4b – Non-FIPS Approved But Allowed Cryptographic Functions

The module supports the following non-FIPS 140-2 approved but allowed algorithms:

 RSA (key wrapping; key establishment methodology provides between 112 and 270 bits of encryption
strength; non-compliant less than 112 bits of encryption strength)

 EC Diffie-Hellman (CVL Cert. #1197, key agreement; key establishment methodology provides between
112 and 256 bits of encryption strength; non-compliant less than 112 bits of encryption strength)

The Module implements the following services which are Non-Approved per the SP 800-131A transition:

Function Algorithm Options

Digital Signature and
Asymmetric Key
Generation

[FIPS 186-2] RSA GenKey9.31, SigGen9.31, SigGenPKCS1.5, SigGenPSS (2048/3072/4096
with SHA-1)

[FIPS 186-2] DSA PQG Gen, Key Pair Gen, Sig Gen (2048/3072 with SHA-1)

[FIPS 186-4] DSA PQG Gen, Key Pair Gen, Sig Gen (2048/3072 with SHA-1)

[FIPS 186-2] ECDSA PKG: CURVES (P-192 K-163 B-163) SIG(gen): CURVES(P-192 P-224 P-256
P-384 P-521 K-163 K-233 K-283 K-409 K-571 B-163 B-233 B-283 B-409 B-
571)

[FIPS 186-4] ECDSA PKG: CURVES (P-192 K-163 B-163) SigGen: CURVES(P-192: (SHA-1, 224,
256, 384, 512) P-224:(SHA-1) P-256:(SHA-1) P-384: (SHA-1) P-521:(SHA-1)
K-163: (SHA-1, 224, 256, 384, 512) K-233:(SHA-1) K-283:(SHA-1) K-
409:(SHA-1) K-571:(SHA-1) B-163: (SHA-1, 224, 256, 384, 512) B-
233:(SHA-1) B-283: (SHA-1) B-409:(SHA-1) B-571:(SHA-1))

ECC CDH (CVL) [SP 800-56A]
(§5.7.1.2)

All NIST B, K and P curves sizes 163 and 192

Table 4c – Non-Approved Cryptographic Functions

These algorithms shall not be used when operating in the FIPS Approved mode of operation.

Per IG 9.10, the Module implements a default entry point and automatically runs the FIPS self-tests upon
startup.

4.1 Critical Security Parameters and Public Keys
All CSPs used by the Module are described in this section. All access to these CSPs by Module services are
described in Section 4. The CSP names are generic, corresponding to API parameter data structures.

CSP Name Description

RSA SGK RSA (2048 to 16384 bits) signature generation key

RSA KDK RSA (2048 to 16384 bits) key decryption (private key transport) key

DSA SGK [FIPS 186-4] DSA (2048/3072) signature generation key

ECDSA SGK ECDSA (All NIST defined B, K, and P curves except sizes 163 and 192) signature generation key

EC DH Private EC DH (All NIST defined B, K, and P curves except sizes 163 and 192) private key agreement key.

AES EDK AES (128/192/256) encrypt / decrypt key

AES CMAC AES (128/192/256) CMAC generate / verify key

AES GCM AES (128/192/256) encrypt / decrypt / generate / verify key

AES XTS AES (256/512) XTS encrypt / decrypt key

Triple-DES EDK Triple-DES (3-Key) encrypt / decrypt key

Triple-DES CMAC Triple-DES (3-Key) CMAC generate / verify key

12

HMAC Key Keyed hash key (160/224/256/384/512)

Hash_DRBG CSPs V (440/888 bits) and C (440/888 bits), entropy input (length dependent on security strength)

HMAC_DRBG CSPs V (160/224/256/384/512 bits) and Key (160/224/256/384/512 bits), entropy input (length
dependent on security strength)

CTR_DRBG CSPs V (128 bits) and Key (AES 128/192/256), entropy input (length dependent on security strength)

CO-AD-Digest Pre-calculated HMAC-SHA-1 digest used for Crypto Officer role authentication

User-AD-Digest Pre-calculated HMAC-SHA-1 digest used for User role authentication
Table 4.1a – Critical Security Parameters

Authentication data is loaded into the module during the module build process, performed by an authorized
operator (Crypto Officer), and otherwise cannot be accessed.

The module does not output intermediate key generation values.

CSP Name Description

RSA SVK RSA (1024 to 16384 bits) signature verification public key

RSA KEK RSA (2048 to 16384 bits) key encryption (public key transport) key

DSA SVK [FIPS 186-4] DSA (2048/3072) signature verification key

ECDSA SVK ECDSA (All NIST defined B, K and P curves) signature verification key

EC DH Public EC DH (All NIST defined B, K and P curves) public key agreement key.
Table 4.1b – Public Keys

For all CSPs and Public Keys:

Storage: RAM, associated to entities by memory location. The Module stores DRBG state values for the
lifetime of the DRBG instance. The module uses CSPs passed in by the calling application on the stack. The
Module does not store any CSP persistently (beyond the lifetime of an API call), with the exception of
DRBG state values used for the Modules' default key generation service.

Generation: The Module implements SP 800-90 compliant DRBG services for creation of symmetric keys,
and for generation of DSA, elliptic curve, and RSA keys as shown in Table 4a. The calling application is
responsible for storage of generated keys returned by the module.

Entry: All CSPs enter the Module’s logical boundary in plaintext as API parameters, associated by memory
location. However, none cross the physical boundary.

Output: The Module does not output CSPs, other than as explicit results of key generation services.
However, none cross the physical boundary.

Destruction: Zeroization of sensitive data is performed automatically by API function calls for temporarily
stored CSPs. In addition, the module provides functions to explicitly destroy CSPs related to random
number generation services. The calling application is responsible for parameters passed in and out of the
module.

Private and secret keys as well as seeds and entropy input are provided to the Module by the calling
application, and are destroyed when released by the appropriate API function calls. Keys residing in internally
allocated data structures (during the lifetime of an API call) can only be accessed using the Module defined API.
The operating system protects memory and process space from unauthorized access. Only the calling
application that creates or imports keys can use or export such keys. All API functions are executed by the
invoking calling application in a non-overlapping sequence such that no two API functions will execute
concurrently. An authorized application as user (Crypto-Officer and User) has access to all key data generated
during the operation of the Module.

Because the amount of entropy loaded by the application is dependent on the “num” parameter used by the

13

calling application, the minimum number of bits of entropy is considered equal to the “num” parameter
selection of the calling application. The calling application must call the RAND_add() with the “num” parameter
of at least 32-bytes (256-bits).

In the event Module power is lost and restored the calling application must ensure that any AES-GCM keys
used for encryption or decryption are re-distributed.

Module users (the calling applications) shall use entropy sources that meet the security strength required for
the random number generation mechanism as shown in [SP 800-90] Table 2 (Hash_DRBG, HMAC_DRBG), Table
3 (CTR_DRBG). This entropy is supplied by means of callback functions. Those functions must return an error if
the minimum entropy strength cannot be met.

14

5 Roles, Authentication and Services
The Module implements the required User and Crypto Officer roles and requires authentication for those roles.
Only one role may be active at a time and the Module does not allow concurrent operators. The User or
Crypto Officer role is assumed by passing the appropriate password to the FIPS_module_mode_set() function.
The password values may be specified at build time and must have a minimum length of 16 characters. Any
attempt to authenticate with an invalid password will result in an immediate and permanent failure condition
rendering the Module unable to enter the FIPS mode of operation, even with subsequent use of a correct
password.

Authentication data is loaded into the Module during the Module build process, performed by the Crypto
Officer, and otherwise cannot be accessed.

Since minimum password length is 16 characters, the probability of a random successful authentication
attempt in one try is a maximum of 1/25616, or less than 1/1038. The Module permanently disables further
authentication attempts after a single failure, so this probability is independent of time.

Both roles have access to all of the services provided by the Module.

• User Role (User): Loading the Module and calling any of the API functions.

• Crypto Officer Role (CO): Installation of the Module on the host computer system and calling of any API
functions.

All services implemented by the Module are listed below, along with a description of service CSP access. The
access modes are determined as follows:

- Generate (G): Generates the Critical Security Parameter (CSP_ using an approved Random Bit

Generator

- Read (R): Export the CSP

- Write (W): Enter/establish and store a CSP

- Destroy (D): Overwrite the CSP

- Execute (E): Employ the CSP

Service Role Description

Initialize User, CO Module initialization. Does not access CSPs.

E: CO-AD-Digest, User-AD-Digest

Self-test User, CO Perform self tests (FIPS_selftest).

Does not access CSPs.

Show status User, CO Functions that provide module status information:

 Version (as unsigned long or const char *)

 FIPS Mode (Boolean)
Does not access CSPs.

Zeroize User, CO Functions that destroy CSPs:
fips_drbg_uninstantiate
D: DRBG CSPs (Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs)

All other services automatically overwrite CSPs stored in allocated memory.
Stack cleanup is the responsibility of the calling application.

15

Service Role Description

Random number
generation

User, CO Used for random number and symmetric key generation.

 Seed or reseed a DRBG instance

 Determine security strength of a DRBG instance

 Obtain random data

E: Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs.

Asymmetric key
generation

User, CO Used to generate DSA, ECDSA and RSA keys:
G: RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK

Symmetric
encrypt/decrypt

User, CO Used to encrypt or decrypt data.

E: AES EDK, TRIPLE-DES EDK, AES GCM, AES XTS (passed in by the calling
process).

Symmetric digest User, CO Used to generate or verify data integrity with CMAC.

E: AES CMAC, TRIPLE-DES CMAC (passed in by the calling process)

Message digest User, CO Used to generate a SHA-1 or SHA-2 message digest.

Does not access CSPs.

Keyed Hash User, CO Used to generate or verify data integrity with HMAC.

E: HMAC Key (passed in by the calling process).

Key transport User, CO Used to encrypt or decrypt a key value on behalf of the calling process (does not
establish keys into the module).

E: RSA KDK, RSA KEK (passed in by the calling process).

Key agreement User, CO Used to perform key agreement primitives on behalf of the calling process (does
not establish keys into the module).

E: EC Diffie-Hellman Private, EC Diffie-Hellman Public (passed in by the calling
process)

Digital signature User, CO Used to generate or verify RSA, DSA or ECDSA digital signatures.

E: RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK (passed in by
the calling process).

Utility User, CO Miscellaneous helper functions.

Does not access CSPs.

Table 5 – Services and CSP Access

"Key transport" can refer to a) moving keys in and out of the module, or b) the use of keys by an external application. The latter definition is the one that
applies to the OpenSSL FIPS Object Module

16

6 Self-test
The Module performs the self-tests listed below on invocation of Initialize or Self-test.

Algorithm Type Test Attributes

Software
integrity

KAT HMAC-SHA1

HMAC KAT One KAT per SHA1, SHA224, SHA256, SHA384 and SHA512 Per IG 9.3, this testing covers SHA
POST requirements.

AES KAT Separate encrypt and decrypt, ECB mode, 128 bit key length

AES CCM KAT Separate encrypt and decrypt, 192 key length

AES GCM KAT Separate encrypt and decrypt, 256 key length

XTS-AES KAT 128, 256 bit key sizes to support either the 256-bit key size (for XTS-AES-128) or the 512-bit key
size (for XTS-AES-256)

AES CMAC KAT Sign and verify CBC mode, 128, 192, 256 key lengths

Triple-DES KAT Separate encrypt and decrypt, ECB mode, 3-Key

Triple-DES
CMAC

KAT CMAC generate and verify, CBC mode, 3-Key

RSA KAT Sign and verify using 2048 bit key, SHA-256, PKCS#1

DSA PCT Sign and verify using 2048 bit key, SHA-384

DRBG KAT CTR_DRBG: AES, 256 bit with and without derivation function
HASH_DRBG: SHA256
HMAC_DRBG: SHA256

ECDSA PCT Keygen, sign, verify using P-224, K-233 and SHA512. The K-233 self-test is not performed for
operational environments that support prime curve only (see Table 2).

ECC CDH KAT Shared secret calculation per SP 800-56A §5.7.1.2, IG 9.6
Table 6a - Power On Self Tests (KAT = Known answer test; PCT = Pairwise consistency test)

The Module is installed using one of the set of instructions in Appendix A, as appropriate for the target system.
The HMAC-SHA-1 of the Module distribution file as tested by the CMT Laboratory and listed in Appendix A is
verified during installation of the Module file as described in Appendix A.

The FIPS_mode_set() function performs all power-up self-tests listed above with no operator intervention
required, returning a “1” if all power-up self-tests succeed, and a “0” otherwise. This function is run as part of
every module initialization. If any component of the power-up self-test fails an internal flag is set to prevent
subsequent invocation of any cryptographic function calls.

The power-up self-tests may also be performed on-demand by calling FIPS_selftest(), which returns a “1” for
success and “0” for failure. Interpretation of this return code is the responsibility of the calling application.

The Module also implements the following conditional tests:

Algorithm Test

DRBG Tested as required by [SP800-90] Section 11

DRBG FIPS 140-2 continuous test for stuck fault

NDRNG FIPS 140-2 continuous test for NDRNG

DSA Pairwise consistency test on each generation of a key pair

ECDSA Pairwise consistency test on each generation of a key pair

RSA Pairwise consistency test on each generation of a key pair
Table 6b - Conditional Tests

In the event of a DRBG self-test failure the calling application must uninstantiate and reinstantiate the DRBG
per the requirements of [SP 800-90A]; this is not something the Module can do itself.

17

Pairwise consistency tests are performed for both possible modes of use, e.g. Sign/Verify and Encrypt/Decrypt.

18

7 Operational Environment
The tested operating systems segregate user processes into separate process spaces. Each process space is
logically separated from all other processes by the operating system software and hardware. The Module
functions entirely within the process space of the calling application, and implicitly satisfies the FIPS 140-2
requirement for a single user mode of operation.

19

8 Mitigation of other Attacks
The module is not designed to mitigate against attacks which are outside of the scope of FIPS 140-2.

20

Appendix A Installation and Usage Guidance
The build and target systems may be the same type of system or even the same device, or may be different
systems – the Module supports cross-compilation environments.

Each of these command sets are relative to the top of the directory containing the uncompressed and
expanded contents of the distribution files mcafee-fips-1.0.1e.tar.xz. The command sets are:

./config

make

make install

Installation instructions

1. Download and copy the distribution file to the build system.

2. Verify the SHA-256 digest of the distribution file; see Appendix B. An independently acquired FIPS 140-

2 validated implementation of SHA-256 must be used for this digest verification. Note that this

verification can be performed on any convenient system and not necessarily on the specific build or

target system.

3. Unpack the distribution

gunzip -c mcafee-fips-1.0.1e.tar.xz

4. Execute one of the installation command set as shown above. No other command sets shall be used.

5. The resulting fipscanister.o file is now available for use.

Note that failure to use one of the specified commands sets exactly as shown will result in a module that
cannot be considered compliant with FIPS 140-2.

Linking the Runtime Executable Application

Note that applications interfacing with the FIPS Object Module are outside of the cryptographic boundary.
When linking the application with the FIPS Object Module two steps are necessary:

1. The HMAC-SHA-1 digest of the FIPS Object Module file must be calculated and verified against the installed

digest to ensure the integrity of the FIPS object module.

2. A HMAC-SHA1 digest of the FIPS Object Module must be generated and embedded in the FIPS Object

Module for use at runtime initialization.

The fips_standalone_sha1 command can be used to perform the verification of the FIPS Object Module and to
generate the new HMAC-SHA-1 digest for the runtime executable application. Failure to embed the digest in
the executable object will prevent initialization of FIPS mode.

AES-GCM IV Construction/Usage

In case the module’s power is lost and then restored, the key used for the AES GCM encryption or decryption
shall be redistributed. The AES GCM IV generation is in compliance with the [RFC5288] and shall only be used
for the TLS protocol version 1.2 to be compliant with [FIPS140-2_IG] IG A.5, provision 1 (“TLS protocol IV

21

generation”); thus, the module is compliant with [SP800-52].

22

Appendix B Controlled Distribution File Fingerprint
The McAfee OpenSSL FIPS Object Module v1.0.1 consists of the McAfee FIPS Object Module (the fipscanister.o
or fipscanister.lib contiguous unit of binary object code) generated from the specific source files.

The source files are in the module distribution mcafee-fips-1.0.1e.tar.xz with SHA-256 digest of

b1531f898dac41d30b7131c37b81511a8be730e013f00ead73aebf679a737127

The distribution is obtained by directly contacting the Internal Product Certification team.

The set of files specified in this tar file constitutes the complete set of source files of this module.
There shall be no additions, deletions, or alterations of this set as used during module build. The distribution
tar file shall be verified using the above SHA-256 digest.

23

Appendix C Compilers
This appendix lists the specific compilers used to generate the Module for the respective Operational
Environments. Note this list does not imply that use of the Module is restricted to only the listed compiler
versions, only that the use of other versions has not been confirmed to produce a correct result.

Operational Environment Compiler

1 Linux 3.10 on VMware ESXi 5.5 gcc 4.8.5
Table 7 - Compilers

